Pseudotypes of vesicular stomatitis virus with CD4 formed by clustering of membrane microdomains during budding.

نویسندگان

  • Erica L Brown
  • Douglas S Lyles
چکیده

Many plasma membrane components are organized into detergent-resistant membrane microdomains referred to as lipid rafts. However, there is much less information about the organization of membrane components into microdomains outside of lipid rafts. Furthermore, there are few approaches to determine whether different membrane components are colocalized in microdomains as small as lipid rafts. We have previously described a new method of determining the extent of organization of proteins into membrane microdomains by analyzing the distribution of pairwise distances between immunogold particles in immunoelectron micrographs. We used this method to analyze the microdomains involved in the incorporation of the T-cell antigen CD4 into the envelope of vesicular stomatitis virus (VSV). In cells infected with a recombinant virus that expresses CD4 from the viral genome, both CD4 and the VSV envelope glycoprotein (G protein) were found in detergent-soluble (nonraft) membrane fractions. However, analysis of the distribution of CD4 and G protein in plasma membranes by immunoelectron microscopy showed that both were organized into membrane microdomains of similar sizes, approximately 100 to 150 nm. In regions of plasma membrane outside of virus budding sites, CD4 and G protein were present in separate membrane microdomains, as shown by double-label immunoelectron microscopy data. However, virus budding occurred from membrane microdomains that contained both G protein and CD4, and extended to approximately 300 nm, indicating that VSV pseudotype formation with CD4 occurs by clustering of G protein- and CD4-containing microdomains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma membrane microdomains containing vesicular stomatitis virus M protein are separate from microdomains containing G protein and nucleocapsids.

Immunogold electron microscopy and analysis were used to determine the organization of the major structural proteins of vesicular stomatitis virus (VSV) during virus assembly. We determined that matrix protein (M protein) partitions into plasma membrane microdomains in VSV-infected cells as well as in transfected cells expressing M protein. The sizes of the M-protein-containing microdomains out...

متن کامل

Requirement for a non-specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus.

The cytoplasmic domains of viral glycoproteins are often involved in specific interactions with internal viral components. These interactions can concentrate glycoproteins at virus budding sites and drive efficient virus budding, or can determine virion morphology. To investigate the role of the vesicular stomatitis virus (VSV) glycoprotein (G) cytoplasmic and transmembrane domains in budding, ...

متن کامل

Pseudotypes of vesicular stomatitis virus with the mixed coat of reticuloendotheliosis virus and vesicular stomatitis virus.

Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VS...

متن کامل

Growth of pseudotypes of vesicular stomatitis virus with N-tropic murine leukemia virus coats in cells resistant to N-tropic viruses.

Formation of pseudotypes between murine RNA tumor viruses and vesicular stomatitis virus (VSV) has been confirmed. Pseudotypes of VSV genomes coated by the surface envelope from an N-tropic tumor virus grew equally well in cells homozygous for either the Fv-1(n) or Fv-1(b) alleles. Therefore, the product of the Fv-1 locus, which restricts growth of murine RNA tumor viruses, must act on an intra...

متن کامل

Vesicular stomatitis virus glycoprotein does not determine the site of virus release in polarized epithelial cells.

In polarized epithelial cells, the vesicular stomatitis virus glycoprotein is segregated to the basolateral plasma membrane, where budding of the virus takes place. We have generated recombinant viruses expressing mutant glycoproteins without the basolateral-membrane-targeting signal in the cytoplasmic domain. Though about 50% of the mutant glycoproteins were found at the apical plasma membrane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 79 11  شماره 

صفحات  -

تاریخ انتشار 2005